Emotions are Subtle: Learning Sentiment Based Text Representations Using Contrastive Learning

12/02/2021
by   Ipsita Mohanty, et al.
0

Contrastive learning techniques have been widely used in the field of computer vision as a means of augmenting datasets. In this paper, we extend the use of these contrastive learning embeddings to sentiment analysis tasks and demonstrate that fine-tuning on these embeddings provides an improvement over fine-tuning on BERT-based embeddings to achieve higher benchmarks on the task of sentiment analysis when evaluated on the DynaSent dataset. We also explore how our fine-tuned models perform on cross-domain benchmark datasets. Additionally, we explore upsampling techniques to achieve a more balanced class distribution to make further improvements on our benchmark tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset