Enabling Spike-based Backpropagation in State-of-the-art Deep Neural Network Architectures

03/15/2019
by   Chankyu Lee, et al.
0

Spiking Neural Networks (SNNs) has recently emerged as a prominent neural computing paradigm. However, the typical shallow spiking network architectures have limited capacity for expressing complex representations, while training a very deep spiking network have not been successful so far. Diverse methods have been proposed to get around this issue such as converting off-line trained deep Artificial Neural Networks (ANNs) to SNNs. However, ANN-to-SNN conversion scheme fails to capture the temporal dynamics of a spiking system. On the other hand, it is still a difficult problem to directly train deep SNNs using input spike events due to the discontinuous and non-differentiable nature of the spike signals. To overcome this problem, we propose using differentiable (but approximate) activation for Leaky Integrate-and-Fire (LIF) spiking neurons to train deep convolutional SNNs with input spike events using spike-based backpropagation algorithm. Our experiments show the effectiveness of the proposed spike-based learning strategy on state-of-the-art deep networks (VGG and Residual architectures) by achieving the best classification accuracies in MNIST, SVHN and CIFAR-10 datasets compared to other SNNs trained with spike-based learning. Moreover, we analyze sparse event-driven computations to demonstrate the efficacy of proposed SNN training method for inference operation in the spiking domain.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset