Encrypted Distributed Lasso for Sparse Data Predictive Control

04/23/2021
by   Andreea B. Alexandru, et al.
0

The least squares problem with L1-regularized regressors, called Lasso, is a widely used approach in optimization problems where sparsity of the regressors is desired. This formulation is fundamental for many applications in signal processing, machine learning and control. As a motivating problem, we investigate a sparse data predictive control problem, run at a cloud service to control a system with unknown model, using L1-regularization to limit the behavior complexity. The input-output data collected for the system is privacy-sensitive, hence, we design a privacy-preserving solution using homomorphically encrypted data. The main challenges are the non-smoothness of the L1-norm, which is difficult to evaluate on encrypted data, as well as the iterative nature of the Lasso problem. We use a distributed ADMM formulation that enables us to exchange substantial local computation for little communication between multiple servers. We first give an encrypted multi-party protocol for solving the distributed Lasso problem, by approximating the non-smooth part with a Chebyshev polynomial, evaluating it on encrypted data, and using a more cost effective distributed bootstrapping operation. For the example of data predictive control, we prefer a non-homogeneous splitting of the data for better convergence. We give an encrypted multi-party protocol for this non-homogeneous splitting of the Lasso problem to a non-homogeneous set of servers: one powerful server and a few less powerful devices, added for security reasons. Finally, we provide numerical results for our proposed solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset