End-to-End Audiovisual Fusion with LSTMs

09/12/2017
by   Stavros Petridis, et al.
0

Several end-to-end deep learning approaches have been recently presented which simultaneously extract visual features from the input images and perform visual speech classification. However, research on jointly extracting audio and visual features and performing classification is very limited. In this work, we present an end-to-end audiovisual model based on Bidirectional Long Short-Term Memory (BLSTM) networks. To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the pixels and spectrograms and perform classification of speech and nonlinguistic vocalisations. The model consists of multiple identical streams, one for each modality, which extract features directly from mouth regions and spectrograms. The temporal dynamics in each stream/modality are modeled by a BLSTM and the fusion of multiple streams/modalities takes place via another BLSTM. An absolute improvement of 1.9 nonlingusitic vocalisations over audio-only classification is reported on the AVIC database. At the same time, the proposed end-to-end audiovisual fusion system improves the state-of-the-art performance on the AVIC database leading to a 9.7 speech recognition experiments on the OuluVS2 database using different views of the mouth, frontal to profile. The proposed audiovisual system significantly outperforms the audio-only model for all views when the acoustic noise is high.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset