End-to-End Information Extraction by Character-Level Embedding and Multi-Stage Attentional U-Net

06/02/2021
by   Tuan-Anh Nguyen Dang, et al.
0

Information extraction from document images has received a lot of attention recently, due to the need for digitizing a large volume of unstructured documents such as invoices, receipts, bank transfers, etc. In this paper, we propose a novel deep learning architecture for end-to-end information extraction on the 2D character-grid embedding of the document, namely the Multi-Stage Attentional U-Net. To effectively capture the textual and spatial relations between 2D elements, our model leverages a specialized multi-stage encoder-decoders design, in conjunction with efficient uses of the self-attention mechanism and the box convolution. Experimental results on different datasets show that our model outperforms the baseline U-Net architecture by a large margin while using 40% fewer parameters. Moreover, it also significantly improved the baseline in erroneous OCR and limited training data scenario, thus becomes practical for real-world applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset