End-to-end Learnable Diversity-aware News Recommendation
Diversity is an important factor in providing high-quality personalized news recommendations. However, most existing news recommendation methods only aim to optimize recommendation accuracy while ignoring diversity. Reranking is a widely used post-processing technique to promote the diversity of top recommendation results. However, the recommendation model is not perfect and errors may be propagated and amplified in a cascaded recommendation algorithm. In addition, the recommendation model itself is not diversity-aware, making it difficult to achieve a good tradeoff between recommendation accuracy and diversity. In this paper, we propose a news recommendation approach named LeaDivRec, which is a fully learnable model that can generate diversity-aware news recommendations in an end-to-end manner. Different from existing news recommendation methods that are usually based on point- or pair-wise ranking, in LeaDivRec we propose a more effective list-wise news recommendation model. More specifically, we propose a permutation Transformer to consider the relatedness between candidate news and meanwhile can learn different representations for similar candidate news to help improve recommendation diversity. We also propose an effective list-wise training method to learn accurate ranking models. In addition, we propose a diversity-aware regularization method to further encourage the model to make controllable diversity-aware recommendations. Extensive experiments on two real-world datasets validate the effectiveness of our approach in balancing recommendation accuracy and diversity.
READ FULL TEXT