Energy-conserving time propagation for a geometric particle-in-cell Vlasov–Maxwell solver

10/09/2019
by   Katharina Kormann, et al.
0

This paper discusses energy-conserving time-discretizations for finite element particle-in-cell discretizations of the Vlasov–Maxwell system. A geometric spatially discrete system can be obtained using a standard particle-in-cell discretization of the particle distribution and compatible finite element spaces for the fields to discretize the Poisson bracket of the Vlasov–Maxwell model (see Kraus et al., J Plasma Phys 83, 2017). In this paper, we derive energy-conserving time-discretizations based on the discrete gradient method applied to an antisymmetric splitting of the Poisson matrix. Firstly, we propose a semi-implicit method based on the average-vector-field discretization of the subsystems. Moreover, we devise an alternative discrete gradient that yields a time discretization that can additionally conserve Gauss' law. Finally, we explain how substepping for fast species dynamics can be incorporated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset