Energy-Efficient and Delay-Guaranteed Joint Resource Allocation and DU Selection in O-RAN

09/30/2021
by   Turgay Pamuklu, et al.
0

The radio access network (RAN) part of the next-generation wireless networks will require efficient solutions for satisfying low latency and high-throughput services. The open RAN (O-RAN) is one of the candidates to achieve this goal, in addition to increasing vendor diversity and promoting openness. In the O-RAN architecture, network functions are executed in central units (CU), distributed units (DU), and radio units (RU). These entities are virtualized on general-purpose CPUs and form a processing pool. These processing pools can be located in different geographical places and have limited capacity, affecting the energy consumption and the performance of networks. Additionally, since user demand is not deterministic, special attention should be paid to allocating resource blocks to users by ensuring their expected quality of service for latency-sensitive traffic flows. In this paper, we propose a joint optimization solution to enhance energy efficiency and provide delay guarantees to the users in the O-RAN architecture. We formulate this novel problem and linearize it to provide a solution with a mixed-integer linear problem (MILP) solver. We compare this with a baseline that addresses this optimization problem using a disjoint approach. The results show that our approach outperforms the baseline method in terms of energy efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset