Energy-efficient Wireless Analog Sensing for Persistent Underwater Environmental Monitoring
The design of sensors or "things" as part of the new Internet of Underwater Things (IoUTs) paradigm comes with multiple challenges including limited battery capacity, not polluting the water body, and the ability to track continuously phenomena with high temporal/spatial variability. We claim that traditional digital sensors are incapable to meet these demands because of their high power consumption, high complexity (cost), and the use of non-biodegradable materials. To address the above challenges, we propose a novel architecture consisting of a sensing substrate of dense analog biodegradable sensors over which lies the traditional Wireless Sensor Network (WSN). The substrate analog biodegradable sensors perform Shannon mapping (a data-compression technique) using just a single Field Effect Transistor (FET) without the need for power-hungry Analog-to-Digital Converters (ADCs) resulting in much lower power consumption, complexity, and the ability to be powered using only sustainable energy-harvesting techniques. A novel and efficient decoding technique is also presented. Both encoding/decoding techniques have been verified via Spice and MATLAB simulations accounting for underwater acoustic channel variations.
READ FULL TEXT