Energy-Latency Attacks via Sponge Poisoning

03/14/2022
by   Antonio Emanuele Cinà, et al.
5

Sponge examples are test-time inputs carefully-optimized to increase energy consumption and latency of neural networks when deployed on hardware accelerators. In this work, we demonstrate that sponge attacks can also be implanted at training time, when model training is outsourced to a third party, via an attack that we call sponge poisoning. This attack allows one to increase the energy consumption and latency of machine-learning models indiscriminately on each test-time input. We present a novel formalization for sponge poisoning, overcoming the limitations related to the optimization of test-time sponge examples, and show that this attack is possible even if the attacker only controls a few poisoning samples and model updates. Our extensive experimental analysis, involving two deep learning architectures and three datasets, shows that sponge poisoning can almost completely vanish the effect of such hardware accelerators. Finally, we analyze activations of the resulting sponge models, identifying the module components that are more sensitive to this vulnerability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset