Energy-preserving mixed finite element methods for the Hodge wave equation

09/07/2020
by   Yongke Wu, et al.
0

Energy-preserving numerical methods for solving the Hodge wave equation is developed in this paper. Based on the de Rham complex, the Hodge wave equation can be formulated as a first-order system and mixed finite element methods using finite element exterior calculus is used to discretize the space. A continuous time Galerkin method, which can be viewed as a modification of the Crank-Nicolson method, is used to discretize the time which results in a full discrete method preserving the energy exactly when the source term is vanished. A projection based operator is used to establish the optimal order convergence of the proposed methods. Numerical experiments are present to support the theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset