Error estimates for a pointwise tracking optimal control problem of a semilinear elliptic equation
We consider a pointwise tracking optimal control problem for a semilinear elliptic partial differential equation. We derive the existence of optimal solutions and obtain first order optimality conditions. We also obtain necessary and sufficient second order optimality conditions. To approximate the solution of the aforementioned optimal control problem we devise a finite element technique that approximates the solution to the state and adjoint equations with piecewise linear functions and the control variable with piecewise constant functions. We analyze convergence properties and prove that the error approximation of the control variable converges with rate 𝒪(h|log h|) when measured in the L^2-norm.
READ FULL TEXT