Evaluating Las Vegas Algorithms - Pitfalls and Remedies

01/30/2013
by   Holger H. Hoos, et al.
0

Stochastic search algorithms are among the most sucessful approaches for solving hard combinatorial problems. A large class of stochastic search approaches can be cast into the framework of Las Vegas Algorithms (LVAs). As the run-time behavior of LVAs is characterized by random variables, the detailed knowledge of run-time distributions provides important information for the analysis of these algorithms. In this paper we propose a novel methodology for evaluating the performance of LVAs, based on the identification of empirical run-time distributions. We exemplify our approach by applying it to Stochastic Local Search (SLS) algorithms for the satisfiability problem (SAT) in propositional logic. We point out pitfalls arising from the use of improper empirical methods and discuss the benefits of the proposed methodology for evaluating and comparing LVAs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset