Evaluation of Distributed Data Processing Frameworks in Hybrid Clouds

01/06/2022
by   Faheem Ullah, et al.
0

Distributed data processing frameworks (e.g., Hadoop, Spark, and Flink) are widely used to distribute data among computing nodes of a cloud. Recently, there have been increasing efforts aimed at evaluating the performance of distributed data processing frameworks hosted in private and public clouds. However, there is a paucity of research on evaluating the performance of these frameworks hosted in a hybrid cloud, which is an emerging cloud model that integrates private and public clouds to use the best of both worlds. Therefore, in this paper, we evaluate the performance of Hadoop, Spark, and Flink in a hybrid cloud in terms of execution time, resource utilization, horizontal scalability, vertical scalability, and cost. For this study, our hybrid cloud consists of OpenStack (private cloud) and MS Azure (public cloud). We use both batch and iterative workloads for the evaluation. Our results show that in a hybrid cloud (i) the execution time increases as more nodes are borrowed by the private cloud from the public cloud, (ii) Flink outperforms Spark, which in turn outperforms Hadoop in terms of execution time, (iii) Hadoop transfers the largest amount of data among the nodes during the workload execution while Spark transfers the least amount of data, (iv) all three frameworks horizontally scale better as compared to vertical scaling, and (v) Spark is found to be least expensive in terms of cost for data processing while Hadoop is found the most expensive.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset