Evaluation of the Partitioned Global Address Space (PGAS) model for an inviscid Euler solver
In this paper we evaluate the performance of Unified Parallel C (which implements the partitioned global address space programming model) using a numerical method that is widely used in fluid dynamics. In order to evaluate the incremental approach to parallelization (which is possible with UPC) and its performance characteristics, we implement different levels of optimization of the UPC code and compare it with an MPI parallelization on four different clusters of the Austrian HPC infrastructure (LEO3, LEO3E, VSC2, VSC3) and on an Intel Xeon Phi. We find that UPC is significantly easier to develop in compared to MPI and that the performance achieved is comparable to MPI in most situations. The obtained results show worse performance (on VSC2), competitive performance (on LEO3, LEO3E and VSC3), and superior performance (on the Intel Xeon Phi).
READ FULL TEXT