Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For Advection-Dominated Systems

01/25/2023
by   Zhong Yi Wan, et al.
0

We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems described by advection-dominated partialdifferential equations. Those systems have slow-decaying Kolmogorovn-widththat hinders standard methods, including reduced order modeling, from producinghigh-fidelity simulations at low cost. In this work, we construct hypernetwork-based latent dynamical models directly on the parameter space of a compactrepresentation network. We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectoriesthat are both low-dimensional and smooth. These properties render our surrogatemodels highly efficient at inference time. We show the efficacy of our frameworkby learning models that generate accurate multi-step rollout predictions at muchfaster inference speed compared to competitors, for several challenging examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset