Experimental Design of a Prescribed Burn Instrumentation

06/17/2018
by   Adam K. Kochanski, et al.
0

Observational data collected during experiments, such as the planned Fire and Smoke Model Evaluation Experiment (FASMEE), are critical for progressing and transitioning coupled fire-atmosphere models like WRF-SFIRE and WRF-SFIRE-CHEM into operational use. Historical meteorological data, representing typical weather conditions for the anticipated burn locations and times, have been processed to initialize and run a set of simulations representing the planned experimental burns. Based on an analysis of these numerical simulations, this paper provides recommendations on the experimental setup that include the ignition procedures, size and duration of the burns, and optimal sensor placement. New techniques are developed to initialize coupled fire-atmosphere simulations with weather conditions typical of the planned burn locations and time of the year. Analysis of variation and sensitivity analysis of simulation design to model parameters by repeated Latin Hypercube Sampling are used to assess the locations of the sensors. The simulations provide the locations of the measurements that maximize the expected variation of the sensor outputs with the model parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset