EXPLAIN-IT: Towards Explainable AI for Unsupervised Network Traffic Analysis

03/03/2020
by   Andrea Morichetta, et al.
0

The application of unsupervised learning approaches, and in particular of clustering techniques, represents a powerful exploration means for the analysis of network measurements. Discovering underlying data characteristics, grouping similar measurements together, and identifying eventual patterns of interest are some of the applications which can be tackled through clustering. Being unsupervised, clustering does not always provide precise and clear insight into the produced output, especially when the input data structure and distribution are complex and difficult to grasp. In this paper we introduce EXPLAIN-IT, a methodology which deals with unlabeled data, creates meaningful clusters, and suggests an explanation to the clustering results for the end-user. EXPLAIN-IT relies on a novel explainable Artificial Intelligence (AI) approach, which allows to understand the reasons leading to a particular decision of a supervised learning-based model, additionally extending its application to the unsupervised learning domain. We apply EXPLAIN-IT to the problem of YouTube video quality classification under encrypted traffic scenarios, showing promising results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset