Explainable, Interpretable Trustworthy AI for Intelligent Digital Twin: Case Study on Remaining Useful Life

01/17/2023
by   Kazuma Kobayashi, et al.
0

Machine learning (ML) and Artificial Intelligence (AI) are increasingly used in energy and engineering systems, but these models must be fair, unbiased, and explainable. It is critical to have confidence in AI's trustworthiness. ML techniques have been useful in predicting important parameters and improving model performance. However, for these AI techniques to be useful for making decisions, they need to be audited, accounted for, and easy to understand. Therefore, the use of Explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics, such as remaining useful life (RUL) in a digital twin system to make it intelligent while ensuring that the AI model is transparent in its decision-making processes and that the predictions it generates can be understood and trusted by users. By using AI that is explainable, interpretable, and trustworthy, intelligent digital twin systems can make more accurate predictions of RUL, leading to better maintenance and repair planning and, ultimately, improved system performance. The objective of this paper is to understand the idea of XAI and IML and justify the important role of ML/AI in the Digital Twin framework and components, which requires XAI to understand the prediction better. This paper explains the importance of XAI and IML in both local and global aspects to ensure the use of trustworthy ML/AI applications for RUL prediction. This paper used the RUL prediction for the XAI and IML studies and leveraged the integrated python toolbox for interpretable machine learning (PiML).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset