Explicablility as Minimizing Distance from Expected Behavior
In order to have effective human AI collaboration, it is not simply enough to address the question of autonomy; an equally important question is, how the AI's behavior is being perceived by their human counterparts. When AI agent's task plans are generated without such considerations, they may often demonstrate inexplicable behavior from the human's point of view. This problem arises due to the human's partial or inaccurate understanding of the agent's planning process and/or the model. This may have serious implications on human-AI collaboration, from increased cognitive load and reduced trust in the agent, to more serious concerns of safety in interactions with physical agent. In this paper, we address this issue by modeling the notion of plan explicability as a function of the distance between a plan that agent makes and the plan that human expects it to make. To this end, we learn a distance function based on different plan distance measures that can accurately model this notion of plan explicability, and develop an anytime search algorithm that can use this distance as a heuristic to come up with progressively explicable plans. We evaluate the effectiveness of our approach in a simulated autonomous car domain and a physical service robot domain. We provide empirical evaluations that demonstrate the usefulness of our approach in making the planning process of an autonomous agent conform to human expectations.
READ FULL TEXT