Exploring Smoothness and Class-Separation for Semi-supervised Medical Image Segmentation

03/02/2022
by   Yicheng Wu, et al.
0

Semi-supervised segmentation remains challenging in medical imaging since the amount of annotated medical data is often limited and there are many blurred pixels near the adhesive edges or low-contrast regions. To address the issues, we advocate to firstly constrain the consistency of samples with and without strong perturbations to apply sufficient smoothness regularization and further encourage the class-level separation to exploit the unlabeled ambiguous pixels for the model training. Particularly, in this paper, we propose the SS-Net for semi-supervised medical image segmentation tasks, via exploring the pixel-level Smoothness and inter-class Separation at the same time. The pixel-level smoothness forces the model to generate invariant results under adversarial perturbations. Meanwhile, the inter-class separation constrains individual class features should approach their corresponding high-quality prototypes, in order to make each class distribution compact and separate different classes. We evaluated our SS-Net against five recent methods on the public LA and ACDC datasets. The experimental results under two semi-supervised settings demonstrate the superiority of our proposed SS-Net, achieving new state-of-the-art (SOTA) performance on both datasets. The codes will be released.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset