Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems

12/04/2019
by   Ziyun Zhang, et al.
0

We propose to use the Łojasiewicz inequality as a general tool for analyzing the convergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under certain conditions. We demonstrate this generalization by several examples, in particular a nonlinear Schrödinger eigenproblem with an extra high-order interaction term. Numerical experiments are presented for these problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro