Extracting the Unknown from Long Math Problems
In problem solving, understanding the problem that one seeks to solve is an essential initial step. In this paper, we propose computational methods for facilitating problem understanding through the task of recognizing the unknown in specifications of long Math problems. We focus on the topic of Probability. Our experimental results show that learning models yield strong results on the task, a promising first step towards human interpretable, modular approaches to understanding long Math problems.
READ FULL TEXT