f-GAIL: Learning f-Divergence for Generative Adversarial Imitation Learning

10/02/2020
by   Xin Zhang, et al.
1

Imitation learning (IL) aims to learn a policy from expert demonstrations that minimizes the discrepancy between the learner and expert behaviors. Various imitation learning algorithms have been proposed with different pre-determined divergences to quantify the discrepancy. This naturally gives rise to the following question: Given a set of expert demonstrations, which divergence can recover the expert policy more accurately with higher data efficiency? In this work, we propose f-GAIL, a new generative adversarial imitation learning (GAIL) model, that automatically learns a discrepancy measure from the f-divergence family as well as a policy capable of producing expert-like behaviors. Compared with IL baselines with various predefined divergence measures, f-GAIL learns better policies with higher data efficiency in six physics-based control tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset