False Discovery and Its Control in Low Rank Estimation

10/19/2018
by   Armeen Taeb, et al.
0

Models specified by low-rank matrices are ubiquitous in contemporary applications. In many of these problem domains, the row/column space structure of a low-rank matrix carries information about some underlying phenomenon, and it is of interest in inferential settings to evaluate the extent to which the row/column spaces of an estimated low-rank matrix signify discoveries about the phenomenon. However, in contrast to variable selection, we lack a formal framework to assess true/false discoveries in low-rank estimation; in particular, the key source of difficulty is that the standard notion of a discovery is a discrete one that is ill-suited to the smooth structure underlying low-rank matrices. We address this challenge via a geometric reformulation of the concept of a discovery, which then enables a natural definition in the low-rank case. We describe and analyze a generalization of the Stability Selection method of Meinshausen and Bühlmann to control for false discoveries in low-rank estimation, and we demonstrate its utility compared to previous approaches via numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset