Fast Counting in Machine Learning Applications

04/12/2018
by   Subhadeep Karan, et al.
0

We propose scalable methods to execute counting queries in machine learning applications. To achieve memory and computational efficiency, we abstract counting queries and their context such that the counts can be aggregated as a stream. We demonstrate performance and scalability of the resulting approach on random queries, and through extensive experimentation using Bayesian networks learning and association rule mining. Our methods significantly outperform commonly used ADtrees and hash tables, and are practical alternatives for processing large-scale data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset