Fast Exact Matrix Completion: A Unifying Optimization Framework

10/21/2019
by   Dimitris Bertsimas, et al.
28

We consider the problem of matrix completion of rank k on an n× m matrix. We show that both the general case and the case with side information can be formulated as a combinatorical problem of selecting k vectors from p column features. We demonstrate that it is equivalent to a separable optimization problem that is amenable to stochastic gradient descent. We design fastImpute, based on projected stochastic gradient descent, to enable efficient scaling of the algorithm of sizes of 10^5 × 10^5. We report experiments on both synthetic and real-world datasets that show fastImpute is competitive in both the accuracy of the matrix recovered and the time needed across all cases. Furthermore, when a high number of entries are missing, fastImpute is over 75% lower in MAPE and 10x faster than current state-of-the-art matrix completion methods in both the case with side information and without.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro