Feature Engineering vs BERT on Twitter Data

10/28/2022
by   Ryiaadh Gani, et al.
0

In this paper, we compare the performances of traditional machine learning models using feature engineering and word vectors and the state-of-the-art language model BERT using word embeddings on three datasets. We also consider the time and cost efficiency of feature engineering compared to BERT. From our results we conclude that the use of the BERT model was only worth the time and cost trade-off for one of the three datasets we used for comparison, where the BERT model significantly outperformed any kind of traditional classifier that uses feature vectors, instead of embeddings. Using the BERT model for the other datasets only achieved an increase of 0.03 and 0.05 of accuracy and F1 score respectively, which could be argued makes its use not worth the time and cost of GPU.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset