Federated Learning via Inexact ADMM

04/22/2022
by   Shenglong Zhou, et al.
0

One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full devices participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, this paper develops an inexact alternating direction method of multipliers (ADMM), which is both computation and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro