FGN: Fusion Glyph Network for Chinese Named Entity Recognition

01/15/2020
by   Zhenyu Xuan, et al.
0

Chinese NER is a challenging task. As pictographs, Chinese characters contain latent glyph information, which is often overlooked. We propose the FGN, Fusion Glyph Network for Chinese NER. This method may offer glyph information for fusion representation learning with BERT. The major innovations of FGN include: (1) a novel CNN structure called CGS-CNN is proposed to capture glyph information from both character graphs and their neighboring graphs. (2) we provide a method with sliding window and Slice-Attention to extract interactive information between BERT representation and glyph representation. Experiments are conducted on four NER datasets, showing that FGN with LSTM-CRF as tagger achieves new state-of-the-arts performance for Chinese NER. Further, more experiments are conducted to investigate the influences of various components and settings in FGN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset