Finite Population Survey Sampling: An Unapologetic Bayesian Perspective
This article attempts to offer some perspectives on Bayesian inference for finite population quantities when the units in the population are assumed to exhibit complex dependencies. Beginning with an overview of Bayesian hierarchical models, including some that yield design-based Horvitz-Thompson estimators, the article proceeds to introduce dependence in finite populations and sets out inferential frameworks for ignorable and nonignorable responses. Multivariate dependencies using graphical models and spatial processes are discussed and some salient features of two recent analyses for spatial finite populations are presented.
READ FULL TEXT