Finitely accessible arboreal adjunctions and Hintikka formulae
Arboreal categories provide an axiomatic framework in which abstract notions of bisimilarity and back-and-forth games can be defined. They act on extensional categories, typically consisting of relational structures, via arboreal adjunctions. In the examples, equivalence of structures in various fragments of infinitary first-order logic (with finitely many variables) can be captured by transferring bisimilarity along the adjunction. In most applications, the categories involved are locally finitely presentable and the adjunctions finitely accessible. Drawing on this insight, we identify the expressive power of this class of adjunctions. We show that the ranks of back-and-forth games in the arboreal category are definable by formulae à la Hintikka. Thus, the relation between extensional objects induced by bisimilarity is always coarser than equivalence in infinitary first-order logic. Our approach relies on Gabriel-Ulmer duality for locally finitely presentable categories, and Hodges' word-constructions.
READ FULL TEXT