FL Games: A federated learning framework for distribution shifts
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server. However, participating clients typically each hold data from a different distribution, whereby predictive models with strong in-distribution generalization can fail catastrophically on unseen domains. In this work, we argue that in order to generalize better across non-i.i.d. clients, it is imperative to only learn correlations that are stable and invariant across domains. We propose FL Games, a game-theoretic framework for federated learning for learning causal features that are invariant across clients. While training to achieve the Nash equilibrium, the traditional best response strategy suffers from high-frequency oscillations. We demonstrate that FL Games effectively resolves this challenge and exhibits smooth performance curves. Further, FL Games scales well in the number of clients, requires significantly fewer communication rounds, and is agnostic to device heterogeneity. Through empirical evaluation, we demonstrate that FL Games achieves high out-of-distribution performance on various benchmarks.
READ FULL TEXT