FLAD: Adaptive Federated Learning for DDoS Attack Detection

05/13/2022
by   Roberto Doriguzzi-Corin, et al.
0

Federated Learning (FL) has been recently receiving increasing consideration from the cybersecurity community as a way to collaboratively train deep learning models with distributed profiles of cyberthreats, with no disclosure of training data. Nevertheless, the adoption of FL in cybersecurity is still in its infancy, and a range of practical aspects have not been properly addressed yet. Indeed, the Federated Averaging algorithm at the core of the FL concept requires the availability of test data to control the FL process. Although this might be feasible in some domains, test network traffic of newly discovered attacks cannot be always shared without disclosing sensitive information. In this paper, we address the convergence of the FL process in dynamic cybersecurity scenarios, where the trained model must be frequently updated with new recent attack profiles to empower all members of the federation with latest detection features. To this aim, we propose FLAD (adaptive Federated Learning Approach to DDoS attack detection), a FL solution for cybersecurity applications based on an adaptive mechanism that orchestrates the FL process by dynamically assigning more computation to those members whose attacks profiles are harder to learn, without the need of sharing any test data to monitor the performance of the trained model. Using a recent dataset of DDoS attacks, we demonstrate that FLAD outperforms the original FL algorithm in terms of convergence time and accuracy across a range of unbalanced datasets of heterogeneous DDoS attacks. We also show the robustness of our approach in a realistic scenario, where we retrain the deep learning model multiple times to introduce the profiles of new attacks on a pre-trained model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset