FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection

10/30/2020
by   Zhi Qiao, et al.
0

To test the possibility of differentiating chest x-ray images of COVID-19 against other pneumonia and healthy patients using deep neural networks. We construct the X-ray imaging data from two publicly available sources, which include 5508 chest x-ray images across 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19. To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL), a flexible module to ensemble several convolutional neural network (CNN) models and fuse with a focal loss for accurate COVID-19 detection on class imbalance data. FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics. Compared with the best baseline, FLANNEL shows a higher macro-F1 score with 6 identification task where it achieves 0.7833(0.07) in Precision, 0.8609(0.03) in Recall, and 0.8168(0.03) F1 score.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset