FlowFormer: A Transformer Architecture for Optical Flow
We introduce Optical Flow TransFormer (FlowFormer), a transformer-based neural network architecture for learning optical flow. FlowFormer tokenizes the 4D cost volume built from an image pair, encodes the cost tokens into a cost memory with alternate-group transformer (AGT) layers in a novel latent space, and decodes the cost memory via a recurrent transformer decoder with dynamic positional cost queries. On the Sintel benchmark clean pass, FlowFormer achieves 1.178 average end-ponit-error (AEPE), a 15.1 best published result (1.388). Besides, FlowFormer also achieves strong generalization performance. Without being trained on Sintel, FlowFormer achieves 1.00 AEPE on the Sintel training set clean pass, outperforming the best published result (1.29) by 22.4
READ FULL TEXT