Force Feedback Control For Dexterous Robotic Hands Using Conditional Postural Synergies

03/10/2023
by   Dimitrios Dimou, et al.
0

We present a force feedback controller for a dexterous robotic hand equipped with force sensors on its fingertips. Our controller uses the conditional postural synergies framework to generate the grasp postures, i.e. the finger configuration of the robot, at each time step based on forces measured on the robot's fingertips. Using this framework we are able to control the hand during different grasp types using only one variable, the grasp size, which we define as the distance between the tip of the thumb and the index finger. Instead of controlling the finger limbs independently, our controller generates control signals for all the hand joints in a (low-dimensional) shared space (i.e. synergy space). In addition, our approach is modular, which allows to execute various types of precision grips, by changing the synergy space according to the type of grasp. We show that our controller is able to lift objects of various weights and materials, adjust the grasp configuration during changes in the object's weight, and perform object placements and object handovers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset