Fradulent User Detection Via Behavior Information Aggregation Network (BIAN) On Large-Scale Financial Social Network

11/04/2022
by   Hanyi Hu, et al.
0

Financial frauds cause billions of losses annually and yet it lacks efficient approaches in detecting frauds considering user profile and their behaviors simultaneously in social network . A social network forms a graph structure whilst Graph neural networks (GNN), a promising research domain in Deep Learning, can seamlessly process non-Euclidean graph data . In financial fraud detection, the modus operandi of criminals can be identified by analyzing user profile and their behaviors such as transaction, loaning etc. as well as their social connectivity. Currently, most GNNs are incapable of selecting important neighbors since the neighbors' edge attributes (i.e., behaviors) are ignored. In this paper, we propose a novel behavior information aggregation network (BIAN) to combine the user behaviors with other user features. Different from its close "relatives" such as Graph Attention Networks (GAT) and Graph Transformer Networks (GTN), it aggregates neighbors based on neighboring edge attribute distribution, namely, user behaviors in financial social network. The experimental results on a real-world large-scale financial social network dataset, DGraph, show that BIAN obtains the 10.2 the State-Of-The-Art models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset