Fragmentation; a Tool for Finding Information, Encryption and Data Flow in Systems
We introduce a new information-theoretic measure, fragmentation (F) which can be used to determine how fragmented predictive information is in a system. The concept can be extended to generate fragmentation matrices that can illustrate information flows through digital brains, in the form of directed graphs. Fragmentation and fragmentation matrices can provide new insights into digital brains structure and function, in other words, how causal digital networks "think" and process information. In addition to describing F we demonstrate how it can be used to examine how complex processing arises in neural networks, including differences in lifetime processing and incidents of incidental encryption.
READ FULL TEXT