From Graph Centrality to Data Depth

05/07/2021
by   Eddie Aamari, et al.
0

Given a sample of points in a Euclidean space, we can define a notion of depth by forming a neighborhood graph and applying a notion of centrality. In the present paper, we focus on the degree, iterates of the H-index, and the coreness, which are all well-known measures of centrality. We study their behaviors when applied to a sample of points drawn i.i.d. from an underlying density and with a connectivity radius properly chosen. Equivalently, we study these notions of centrality in the context of random neighborhood graphs. We show that, in the large-sample limit and under some standard condition on the connectivity radius, the degree converges to the likelihood depth (unsurprisingly), while iterates of the H-index and the coreness converge to new notions of depth.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro