Fully Immersive Virtual Reality for Skull-base Surgery: Surgical Training and Beyond
Purpose: A fully immersive virtual reality system (FIVRS), where surgeons can practice procedures on virtual anatomies, is a scalable and cost-effective alternative to cadaveric training. The fully digitized virtual surgeries can also be used to assess the surgeon's skills automatically using metrics that are otherwise hard to collect in reality. Thus, we present FIVRS, a virtual reality (VR) system designed for skull-base surgery, which combines high-fidelity surgical simulation software with a real hardware setup. Methods: FIVRS integrates software and hardware features to allow surgeons to use normal clinical workflows for VR. FIVRS uses advanced rendering designs and drilling algorithms for realistic surgery. We also design a head-mounted display with ergonomics similar to that of surgical microscopes. A plethora of digitized data of VR surgery are recorded, including eye gaze, motion, force and video of the surgery for post-analysis. A user-friendly interface is also designed to ease the learning curve of using FIVRS. Results: We present results from a user study involving surgeons to showcase the efficacy FIVRS and its generated data. Conclusion: We present FIVRS, a fully immersive VR system for skull base surgery. FIVRS features a realistic software simulation coupled with modern hardware for improved realism. The system is completely open-source and provides feature-rich data in an industry-standard format.
READ FULL TEXT