Functional data analysis: An application to COVID-19 data in the United States

09/17/2020
by   Chen Tang, et al.
0

The COVID-19 pandemic so far has caused huge negative impacts on different areas all over the world, and the United States (US) is one of the most affected countries. In this paper, we use methods from the functional data analysis to look into the COVID-19 data in the US. We explore the modes of variation of the data through a functional principal component analysis (FPCA), and study the canonical correlation between confirmed and death cases. In addition, we run a cluster analysis at the state level so as to investigate the relation between geographical locations and the clustering structure. Lastly, we consider a functional time series model fitted to the cumulative confirmed cases in the US, and make forecasts based on the dynamic FPCA. Both point and interval forecasts are provided, and the methods for assessing the accuracy of the forecasts are also included.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset