Fundamentals of Partial Rejection Sampling

06/14/2021
by   Mark Jerrum, et al.
0

Partial Rejection Sampling is an algorithmic approach to obtaining a perfect sample from a specified distribution. The objects to be sampled are assumed to be represented by a number of random variables. In contrast to classical rejection sampling, in which all variables are resampled until a feasible solution is found, partial rejection sampling aims at greater efficiency by resampling only a subset of variables that `go wrong'. Partial rejection sampling is closely related to Moser and Tardos' algorithmic version of the Lovász Local Lemma, but with the additional requirement that a specified output distribution should be met. This article provides a largely self-contained account of the basic form of the algorithm and its analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro