FuxiCTR: An Open Benchmark for Click-Through Rate Prediction
In many applications, such as recommender systems, online advertising, and product search, click-through rate (CTR) prediction is a critical task, because its accuracy has a direct impact on both platform revenue and user experience. In recent years, with the prevalence of deep learning, CTR prediction has been widely studied in both academia and industry, resulting in an abundance of deep CTR models. Unfortunately, there is still a lack of a standardized benchmark and uniform evaluation protocols for CTR prediction. This leads to the non-reproducible and even inconsistent experimental results among these studies. In this paper, we present an open benchmark (namely FuxiCTR) for reproducible research and provide a rigorous comparison of different models for CTR prediction. Specifically, we ran over 4,600 experiments for a total of more than 12,000 GPU hours in a uniform framework to re-evaluate 24 existing models on two widely-used datasets, Criteo and Avazu. Surprisingly, our experiments show that many models have smaller differences than expected and sometimes are even inconsistent with what reported in the literature. We believe that our benchmark could not only allow researchers to gauge the effectiveness of new models conveniently, but also share some good practices to fairly compare with the state of the arts. We will release all the code and benchmark settings.
READ FULL TEXT