GAS-Net: Generative Artistic Style Neural Networks for Fonts
Generating new fonts is a time-consuming and labor-intensive, especially in a language with a huge amount of characters like Chinese. Various deep learning models have demonstrated the ability to efficiently generate new fonts with a few reference characters of that style. This project aims to develop a few-shot cross-lingual font generator based on AGIS-Net and improve the performance metrics mentioned. Our approaches include redesigning the encoder and the loss function. We will validate our method on multiple languages and datasets mentioned.
READ FULL TEXT