General Vector Machine

02/12/2016
by   Hong Zhao, et al.
0

The support vector machine (SVM) is an important class of learning machines for function approach, pattern recognition, and time-serious prediction, etc. It maps samples into the feature space by so-called support vectors of selected samples, and then feature vectors are separated by maximum margin hyperplane. The present paper presents the general vector machine (GVM) to replace the SVM. The support vectors are replaced by general project vectors selected from the usual vector space, and a Monte Carlo (MC) algorithm is developed to find the general vectors. The general project vectors improves the feature-extraction ability, and the MC algorithm can control the width of the separation margin of the hyperplane. By controlling the separation margin, we show that the maximum margin hyperplane can usually induce the overlearning, and the best learning machine is achieved with a proper separation margin. Applications in function approach, pattern recognition, and classification indicate that the developed method is very successful, particularly for small-set training problems. Additionally, our algorithm may induce some particular applications, such as for the transductive inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset