Generalizable Adversarial Examples Detection Based on Bi-model Decision Mismatch
Deep neural networks (DNNs) have shown phenomenal success in a wide range of applications. However, recent studies have discovered that they are vulnerable to Adversarial Examples, i.e., original samples with added subtle perturbations. Such perturbations are often too small and imperceptible to humans, yet they can easily fool the neural networks. Few defense techniques against adversarial examples have been proposed, but they require modifying the target model or prior knowledge of adversarial examples generation methods. Likewise, their performance remarkably drops upon encountering adversarial example types not used during the training stage. In this paper, we propose a new framework that can be used to enhance DNNs' robustness by detecting adversarial examples. In particular, we employ the decision layer of independently trained models as features for posterior detection. The proposed framework doesn't require any prior knowledge of adversarial examples generation techniques, and can be directly augmented with unmodified off-the-shelf models. Experiments on the standard MNIST and CIFAR10 datasets show that it generalizes well across not only different adversarial examples generation methods but also various additive perturbations. Specifically, distinct binary classifiers trained on top of our proposed features can achieve a high detection rate (>90 performance when tested against unseen attacks.
READ FULL TEXT