Generalization in Generation: A closer look at Exposure Bias

10/01/2019
by   Florian Schmidt, et al.
0

Exposure bias refers to the train-test discrepancy that seemingly arises when an autoregressive generative model uses only ground-truth contexts at training time but generated ones at test time. We separate the contributions of the model and the learning framework to clarify the debate on consequences and review proposed counter-measures. In this light, we argue that generalization is the underlying property to address and propose unconditional generation as its fundamental benchmark. Finally, we combine latent variable modeling with a recent formulation of exploration in reinforcement learning to obtain a rigorous handling of true and generated contexts. Results on language modeling and variational sentence auto-encoding confirm the model's generalization capability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset