Generalized deterministic policy gradient algorithms
We study a setting of reinforcement learning, where the state transition is a convex combination of a stochastic continuous function and a deterministic discontinuous function. Such a setting include as a special case the stochastic state transition setting, namely the setting of deterministic policy gradient (DPG). We introduce a theoretical technique to prove the existence of the policy gradient in this generalized setting. Using this technique, we prove that the deterministic policy gradient indeed exists for a certain set of discount factors, and further prove two conditions that guarantee the existence for all discount factors. We then derive a closed form of the policy gradient whenever exists. Interestingly, the form of the policy gradient in such setting is equivalent to that in DPG. Furthermore, to overcome the challenge of high sample complexity of DPG in this setting, we propose the Generalized Deterministic Policy Gradient (GDPG) algorithm. The main innovation of the algorithm is to optimize a weighted objective of the original Markov decision process (MDP) and an augmented MDP that simplifies the original one, and serves as its lower bound. To solve the augmented MDP, we make use of the model-based methods which enable fast convergence. We finally conduct extensive experiments comparing GDPG with state-of-the-art methods on several standard benchmarks. Results demonstrate that GDPG substantially outperforms other baselines in terms of both convergence and long-term rewards.
READ FULL TEXT