Generalized Variational Inference

04/03/2019
by   Jeremias Knoblauch, et al.
0

This paper introduces a generalized representation of Bayesian inference. It is derived axiomatically, recovering existing Bayesian methods as special cases. We use it to prove that variational inference (VI) based on the Kullback-Leibler Divergence with a variational family Q produces the uniquely optimal Q-constrained approximation to the exact Bayesian inference problem. Surprisingly, this implies that standard VI dominates any other Q-constrained approximation to the exact Bayesian inference problem. This means that alternative Q-constrained approximations such as VI targeted at minimizing other divergences and Expectation Propagation can produce better posteriors than VI only by implicitly targeting more appropriate Bayesian inference problems. Inspired by this, we introduce Generalized Variational Inference (GVI), a modular approach for instead solving such alternative inference problems explicitly. We explore some applications of GVI, including robustness and better marginals. Lastly, we derive black box GVI and apply it to Bayesian Neural Networks as well as Deep Gaussian Processes, where GVI comprehensively outperforms competing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset